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THE DYNAMIC CHARACTERISTICS OF A TURBO-ROTOR SIMULATOR

SUPPORTED ON GAS-LUBRICATED FOIL BEARINGS

Part I: Response to Rotating Imbalance and Unidirectional Excitation

ABSTRACT

A sixteen-inch long rotor, weighing approximately twenty-one

pounds, was supported by air-lubricated foil bearings. In physical size

and in mass distribution, the rotor.was closely matched with that of an

experimental Brayton cycle turbo-alternator unit. The rotor was stable

in both the vertical and horizontal attitudes at speeds up to 50,000 rpm.

A detailed description of the experimental apparatus and of the foil bearing

design are given. The paper contains data of response of the rotor to

rotating imbalance, symmetric and asymmetric, and to excitation by means

of a vibrator (shake-table). It is concluded that the gas-lubricated foil-

bearing suspension is free from fractional-frequency whirl and suffers no

loss of load capacity when excited at frequency equal half the rotational

speed. On contrast with rigid gas bearings, the foil bearing imposes no

stringent requirements with respect to dimensional tolerances, cleanliness,

or limitations of journal motion within the narrow confines of bearing

clearance.



INTRODUCTION

Foil bearings are generally associated with the transport of

flexible webs under tension and, specifically, with the generation of

lubricating films separating foil-like materials from arrays of cylindrical

guides and rollers. Whether by design or by coincidence, foil bearings

have always existed in the manufacture and processing of paper, plastic

and metal foil, but recent studies of foil bearings received the impetus

from the development of tape transports and of devices for magnetic re-

cording on flexible media in general. A review of these studies is beyond

the scope of the present investigation, and the reader is referred to com-

prehensive bibliographies contained in references [1] and [2].*

With the exception of peripheral applications, such as loading

devices, for example [3], no serious attempts have been made in the past

to utilize foil bearings as actual supports for high-speed rotors. In the

course of a recent feasibility study, however, speeds of the order 350,000

RPM were attained with a one pound, one inch diameter rotor, supported

in the vertical attitude by very compliant foil bearings [42 ]. Rotation with

preloaded foils could be initiated upon temporary flooding of bearings with

liquid freon, but the experimenters found it difficult to control the foil

suspension and the gyrations of the rytor.

The present study was facilitated by the results of an earlier

investigation, reported in considerable detail in references [5] and [6].

The latter furnished useful results, applicable to the construction and the

estimation of dynamic characteristics of the foil-bearing rotor support

described in the following section. The objectives of the present study

were to advance the foil-bearing concept from feasibility to practicality

*Numbers in brackets designate References at end of paper.
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as means of support for high-speed turbomachines and to increase the ex--

perience necessary for incorporation of the concept in a realistic design.

The mass and moment of inertia of the rotor were closely

matched with those of an existing turbo-alternator and provision was made

for rotation in both the vertical, that: is radially unloaded, and in the hori-

zontal attitudes. Experiments described in the following sections pertain

to responses of the foil-rotor system in both attitudes. Data w obtained

for rotation in both the pressurized and self-acting modes, with a balanced

rotor and with various amounts of symmetric and asymmetric imbalance

added. Additional information, relevant to the. dynamic characteristics of

the foil-bearing supported rotor, was derived from experiments involving

excitations by means of a vibrator (shake-table).
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DESIGN OF FOIL-BEARING SUSPENSION

AND OF EXPERIMENTAL APPARATUS

A pictorial view of the foil-bearing supported rotor in the hori-

zontal attitude is shown in Fig. 1. Component parts of the foil-bearing

support are presented in greater detail in Fig. 2. In the description of the

test apparatus, given in the following paragraphs, numbers in parentheses

refer to components listed in the schematic diagram of the experimental

apparatus in Fig. 3.

The 20.9 lb rotor (1) was 16 inches long and had a polar moment
2

of inertia I = 0.0595 in-lb-sec and a transverse moment of inertia
P 2

I
t

= 1.185 in-lb-sec . The rotor was symmetrical and two journal sleeves,

2.5 inches in diameter and approximately 4 inches long, were shrunk on the

rotor core with a 0.002 inch interference fit at the 2 inch diameter interface.

Each sleeve had 4 rows of 24 orifices, equally spaced along the periphery.

Through these, compressed air was supplied from the interior of the rotor to

separate the preloaded foils from the journals on starting, stopping, and at

low rotational speeds. The location of orifice rows along the journals was

0.25 inchl inboard from the edges of the 1.5 inch wide foils, arranged in

tandem at each bearing journal.

Two end-discs, threaded into the core of the simulator, corres-

ponded to the turbine and compressor wheels. For convenience, one of the

discs was used as a thrust plate, through the center of which the hollow

interior of the rotor was connected to the foil-lift pressure source. Each

disc contained 18 tapped holes for adding balancing screws.

An air-driven turbine wheel (8), containing 24 milled buckets, was located

at the center plane of the rotor. The entire rotor was made of AISI type 440C

stainless steel, with journals hardened to C-56 Rockwell. The 2.5 inch
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diameter sleeves were concentric and round within 100 puinches, with taper

the order of 50 plinches along the 4 inch journal lengths. The surface finish

of journals was 4 pinches RMS. The moments of inertia of the rotor were

determined by pendulation within an accuracy of 2% and balancing was per-

formed on a Schenck Balancing Machine, Model RSl-b to within 350 FLin-oz.

in each balancing plane.

The foil bearings (2) were similar in construction to the experi-

mental unit described in references [51 and [6]1. Each foil bearing support (3)

contained clusters of symmetrically spaced guide posts (4) and foil locks (5),

arranged in tandem on opposite sides of the support plates (3). The split-

construction, doweled support plates were spaced 9 inches apart and securely

assembled into a single frame. The 32 cantilevered foil guides, press-fitted

in pairs into jig-bored holes and secured by means of tie bolts, were parallel

to each other and to the reference planes of the foil-bearing support sub-

assembly within 0.0002 inch. (See Fig. 2.)

The foil bearing supports straddled a turbine nozzle-ring and

manifold (9), from which 8 rectangular nozzles, operating at choked flow

conditions, directed air jets, at an angle calculated to generate a relatively

high torque at rated speed. Adjacent to the rotor ends were two precisely

machined angle plates, the thrust bearing support plate (7) and the alignment

support plate (16). The foil-bearing support assembly, the thrust-bearing

support, the symmetrical alignment support, and the nozzle ring were

securely bolted to a sturdy 1.5 x 12 x 26-inch aluminum base (13), flat to

within 0.002 inch. Spacing of the foregoing components was accomplished

by means of precision gauge blocks and lateral alignment assured by using for

reference a massive, precision-ground bar (10), attached to the base.

The construction of the fixed, externally pressurized thrust bear-

ing (6) allowed for various adjustments and substitutions of components.

While the investigation was focussed on the foil bearings, rather than on
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the thrust bearing, the operational clearances and outer dimensions of the

latter were realistic and representative. The inboard thrust member con-

sisted of three circular, axially adjustable pads, clamped on sturdy,

cantilevered rods, pressed into the thrust-bearing support plate. This

arrangement permitted a great deal of flexibility in adjusting the total axial

clearance. The outboard thrust member consisted of a cluster of six cir-

cular and equally spaced pressure pads, which could be easily replaced by

a single, multi-orifice plate. (Shown in Fig. 3)

The annulus between a central pad and the rotating end disc

'provided a face seal for the foil-lift air supply, ducted through a 5/16 inch

hole, concentric with the pad and the rotor axis. The seal was coplanar

with the outboard thrust surface, but separated from the bearing areas and

vented to the ambient atmosphere.

The inboard and outboard thrust members and the foil lift were

supplied from separate and individually regulated plenums, located in the

cover plate at the rear of the thrust-bearing support plate (7). The inde-

pendently regulated supplies augmented the operational flexibility furnished

by the adjustable thrust-bearing clearance.

The procedure followed in securing and preloading of foils was

the following: The rotor weight, supported initially on alignment pins (11)

slip-fitted to matching holes in the rotor end discs and in the adjacent

support plates, was counterbalanced by means of levers (12). The foils

were then looped around the guides, brought into intimate contact with

the journals along the upper arcs of wrap and secured at the outer posts

· of the upper guide-clusters. Preload weights were then attached to the

free ends of the foils, threaded through guides adjacent'to the foil locks.

Upon removal of alignment pins, the foil bearings were pressurized and

depressurized to equalize the preload tension in all three foil sectors

prior to securing of foil locks. The counterbalancing of the rotor before

preloading was convenient and equivalent to application of initial tension

in the vertical attitude. In the last step, all weights were removed,

making the simulator operational.

5
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INSTRUMENTATION

The orbital motion of the rotor was monitored by means of

orthogonal capacitance probes, in the midplanes of two tandem-foil

bearings, spaced 9 inches apart. Provision was made for measurement

of foil displacement at the midpoints of the 60 degree regions of wrap and

also for the axial movement of the rotor.

The instruments use'd were Wayne-Kerr DM 100 Displacement

Meters and the probes were calibrated by means of precision gauge blocks

and an accurately ground cylinder of diameter equal to that of the journal.

The gap width at the midpoints of several regions of wrap could be ob-

tained directly by connecting the outputs of two parallel probes, one moni-

toring the displacement of the foil and the other that of the journal, to the

terminals of a differential amplifier.

It is estimated that the amplitudes of motion of the rotor,

based on the average sensitivity-scales appended to various oscillograms,

involve maximum possible errors the order of 5%. This estimate includes

variations of sensitivity between individual probes and the variation in

sensitivity due to nonlinearity of probe outputs at relatively large probe

offsets. The corresponding accuracy of scales in oscillograms of gap

width is estimated to be within 10%. /The frequency response of the dis-

placement meters, inclusive of output filters, was flat to at least 2.5 kc

and quite adequate in the range of experimental speeds of rotation and

frequencies of excitation.

The speed of rotation was measured by means of an optical

probe and an MTI KD-38 Fotonic Sensor, using a Hewlett-Packard
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Model 523B Electronic Counter. Above 100 RPS, the speed could be mea-

sured and maintained with an accuracy better than 1%.

A digital-to-analog converter, integral with a Hewlett-Packard

Model 560A Digital Recorder, was used in conjunction with a Model 523B

Electronic Counter to obtain a d.c. signal proportional to the rotor speed.*

This signal, applied to the horizontal plates of an oscilloscope, permitted

direct photographic recording of the rotor amplitude-response and of foil

clearance as functions of the rotational speed. It is estimated that the

accuracy with which the rotational speed can be determined in the oscillo-

grams of scans of the rotor amplitude-response and of the gap width is of

the order 15 RPS, the error being due mainly to slow drift of the converter

output. The recorder furnished automatically printed data of the variation

of the rotational speed during coastdown, from which frictional losses

could be calculated.

The vibrator (MB, Model C-10 Exciter) was capable of trans-

mitting a force of 1200 lb within a frequency range 5 - 3000 CPS. Maxi-

mum displacement amplitudes of 0.5 inches and velocities of 70 in/sec

could be realized. The accelerometers were Endevco, crystal type, used

in conjunction with Glemite amplifiers, having a flat response 5 cycles to

35 kc. Since high frequency, low amplitude components of excitation,

such as multiples of the rotational speed related to the number of nozzles,

orifices, or turbine buckets, and other spurious high frequency distur-

bances could be sensed by the accelerometers, the amplified outputs of

the latter were passed through SKL variable bandwidth filters to eliminate

frequency components higher than 1500 CPS, This arrangement permitted

proper control of motion of the vibrator by the in-line accelerometer and in

a nearly sinusoidal vibration input to the rotor-support assembly, except

at a number of isolated structural and foil-rotor resonances.

*Speed manually controlled.
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EXPERIMENTS

Rotation in the Horizontal Attitude and Response to Residual Imbalance

The first-series of experiments was conducted with the rotor in

the horizontal attitude. A preload tension T = 2.0 lb/in was applied to the

0.001 inch thick, 1.5 inch wide molybdenum foils. The foil-lift supply

pressure was p£ = 30 psig. Upon removal of counterbalance weights, the

rotor displaced downward by approximately 0.002 inch, returning to a position

approximately 0.0003 inch below the reference axis when the foil bearings

were externally pressurized.

The bidirectional thrust bearing had a total axial clearance of

0. 004 inch. In the pressurized mode of operation, the minimum clearance

was 0. 0014 inch because of dissymmetry produced by the thrust of the

foil-lift supply pressure acting on the face seal. The minimum clearance

was on the inboard side of the thrust bearing, in which the outer perimeter

of the thrust pads coincided with the 3. 25 inch diameter of the rotating

end-disc, which served as a runner.

The test procedure followed in obtaining frequency scans of rotor

response to remanent imbalance was to increase the speed very gradually

(typically 2 - 3 RPS/-sec, especially in the resonant bandwidth) and to ac-

celerate in the pressurized mode to approximately 300 RPS. Following rapid cutoff

of the foil-lift air supply and transition to the self-acting 'mode of operation,

the rotor was accelerated to 750 RPS. After a few minutes of high-speed

operation, during which speeds of 50, 000 RPM were obtained on numerous

occasions, the turbine air supply was discontinued and the rotor allowed to

coast down, first in the self-acting mode to approximately 300 RPS, and there-

after in the pressurized mode.
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A typical scan of response during acceleration is presented

in Fig. 4. It can be seen that resonances occur in the pressurized mode

only and that maximum amplitudes occur in a narrow bandwidth, centered

at approximately 140 RPS. The resonant orbits, corresponding to maximum

x- and y-amplitudes in the monitoring planes A and B that straddle each.

pair of foils, are shown in Fig. 5. The timebase displays in the same

figure indicate that the motion was quasi-conical. The maximum amplitude

at the midplane of bearing A was the order of 775 pinches.

The variation of gap width with speed in the horizontal attitude,

at one of the load-supporting foil segments, is illustrated in Fig. 6. At

low speeds and in the pressurized mode of operation, the gap width was

the order of 0.002 inch, increasing noticeably due to squeeze film effects

in the region of resonance. The decrease of gap width, following transition

to the self-acting mode at approximately 300 RPS, is quite drastic. The

clearance is diminished by nearly an order of magnitude to approximately

250 pinches, increasing to approximately 700 pinches at 600 RPS, and to

900 ]Ainches at 750 RPS. On coastdown, the decrease of gap width with

speed in the self-acting regime is moderated by additional slack, due

possibly to thermal relaxation and following slippage of foil at the guides.

During coastdown, just before re-pressurization, the clearance is approxi-

mately 700 pinches, and'thus appreciably wider than following transition

to the self-acting mode during acceleration of the rotor.

Response to Symmetric and Asymmetric Imbalance in the Horizontal Attitude

The remanent imbalance of the rotor, referred to the midplanes

of the end discs (approximately 15 inches apart) was 350 1in-oz in each

plane.* As noted in the preceding section, the maximum amplitude of res-

ponse to remanent imbalance in the midplane of bearing A was approxi-

mately 775 pinches and occurred at a rotational speed of very nearly 140 RPS

(Fig. 5).

The directions of remanent imbalances in each balancing plane could not
be accurately determined. The magnitude of the imbalance vector can be
determined with a much greater degree of certainty than its angular position.
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Various amounts of symmetric and asymmetric imbalance were

then introduced in the form of screws, in the midplanes of the end discs.

The screws were of equal weight and the distances of their mass centers

from the rotor axis were known within 2%.

A comparison is made in Fig. 7 between maximum, or near-

maximum, amplitudes at three levels of symmetric and asymmetric im-

balance. The oscillograms of rotor orbits in the midplanes of bearing A

and bearing B correspond to imbalances of 1,510 Ain-oz, 6,050 Ain-oz

and 31,400 Ain-oz in each plane. These levels correspond respectively

to 4.4, 17.4 and 90.0 times the amount of remanent imbalance. The

orbits in Fig. 7 were recorded in the pressurized mode at 140 RPS

(resonance), and in the self-acting mode at 600 RPS (rated speed).

It can be seen that. the maximum amplitudes* associated with

highest level of symmetric and asymmetric imbalance were the order of

0.0013 inch to 0.0015 inch. At 600 RPS, in the self-acting mode of

operation, the rotor amplitudes in the bearing midplanes remained below

250 flinches at the highest level of imbalance.

It is instructive to note at this point the difference between

the gap width in a foil bearing and the clearance of a rigid-surface

bearing. In the latter case, a 3 mil diameter orbit could hardly be accom-

modated within the clearance circle of a representative gas bearing. In

the case of the foil bearing, both foil and journal can displace, without

diminishing the clearance to dangerously small proportion. Should con-

tact occur briefly, the distribution of load over the effective area of

wrap of a flexible and conforming foil results in far less destruction

than the concentrated loading due to impact and rubbing in a rigid-surface

bearing.

During the first run in the vertical attitude, the experimenters

inadvertently omitted to remove the screws corresponding to the highest

level of asymmetric imbalance and were consequently puzzled by rela-

tively large orbits. The screws were removed and the experiments were

*To be interpreted as one-half of the maximum orbit dimension.
. in



not repeated in the vertical attitude, since the effect of imbalance in the

presence of gravity load, in the horizontal attitude, represents a more

adverse condition.

Rotation in the Vertical Attitude and Response to Residual Imbalance

It is well known that conventional, fluid-film journal bearings,

and gas bearings in particular, are plagued by the phenomenon of self-

excited vibrations of rotors, frequently referred to in the literature as

"half-frequency whirl," and more appropriately as "fractional-frequency

whirl." This type of instability is particularly prone to occur with high-

speed rotors operated in the concentric position, that is, in the absence

of radial loading. The threshold speed of instability is very sensitive to

the rotor mass, an increase of the latter having a very unstabilizing effect.

In the course of an experimental study of foil bearings, which

preceded the present investigation [5,6], no whirl instability was en-

countered with 1.0 lb and 2.4 lb rotors in either the horizontal or vertical

attitudes and at speeds of 60,000 RPM. Results of the present investi-

gation showed the operation of a 20.9 lb rotor* to be stable in both the

vertical and horizontal attitudes at speeds up to 50,000 RPM, wherein the

speed limit was dictated by the strength of interference fits of journal

sleeves on the rotor, and not by imminent danger of instability.

The test procedure for runs in the vertical attitude was

essentially identical with that described in the preceding section. A

typical scan of response to remanent imbalance during coastdown is pre-

sented in Fig. 8. The maximum x and y amplitudes in the monitoring

planes A and B occurred in the pressurized mode, in a narrow frequency

bandwidth centered approximately at 140 RPS, which was nearly coincident

with the resonant bandwidth observed in the horizontal attitude. The

orbits corresponding to these maxima are shown in Fig. 9, in conjunction

*Based on unit projected bearing area, the masses of the three rotors
referred to in'the foregoing are in the ratio 1.0:2.4:2.8.
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with timebase displays of the x-probes. The latter are indicative of the

motion of the rotor axis and the extent to which it is quasi-conical or quasi-

cylindrical .*

Because of symmetry and approximately isoelastic properties of

the foil-bearing supports, and because of the rotor mass distribution with

respect to bearing location, the resonances corresponding to 4 degrees of

freedom occur in a narrow frequency band and the peak amplitudes of all modes

coalesce. These resonances are in the pressurized mode of operation and it

is evident that the resonant bandwidth of the self-acting mode lies well below

the transition speed of 300 RPS..

It can be noted that scans of amplitudes of response in the low

speed range displays a series of rather well defined peaks, at definite speeds

of rotation. While the orbits which characterize the maximum rotor excursions

are synchronous, the orbits corresponding to the minor peaks are multi-looped,

and the number of loops increases with decreasing speed. The relevant timebase

displays show corresponding ultraharmonics superposed on the synchronous

motion. This phenomenon of ultraharmonic resonances in the pressurized mode

of operation was observed and has previously been described in references [5]

and [6]. It was shown that the speed at which an ultraharmonic resonance

occurred, when multiplied by the ultraharmonic number (ratio of orbital to

the rotational frequency), was nearly equal to a speed of synchronous

.resonance. A series of orbits in the frequency bandwidth of the first ultra-

harmonic resonance is illustrated in Fig. 10, together with corresponding

timebase displays of the x-probes. Clearly, the rotor axis describes two

revolutions for each revolution of the rotor about the axis. The reader will

note that the average of the four speeds in Fig. 10 is approximately 67 RPS.

Referring to Fig. 9, and taking the average of the four speeds, 138 RPS, as the

speed of synchronous resonance, it will be noted that the latter occurs at very

nearly twice the speed of the first ultraharmonic resonance.

*The literature dealing with the motion of rotors in bearings abounds with
references to "circular and elliptical" orbits and "cylindrical and conical"
motions of the rotor axes. These simplified descriptions are convenient,
but paths described by points on the rotor axis and surfaces traced by the
axis itself are of far more complex geometry.
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A scan of the gap width at foil sector B1 3 , adjacent to the foil

lock, is shown in Fig. 11. This scan can be compared with the oscil-

logram presented in Fig. 6, which corresponds to the same foil sector

when radially loaded (horizontal attitude). In general, the gap widths

appear to be of the same order of magnitude. During acceleration in the

vertical attitude, the clearance immediately after transition to the self-

acting mode was larger than in the horizontal attitude. Thereafter, the

increase of gap width with speed in the horizontal attitude appears to

have been greater than the increase in the vertical attitude. At 750 RPS.

the gap widths in both attitudes were nearly equal.

The scans of gap width in the pressurized mode of operation

display a relative maximum in the resonant frequency bandwidth, and

this is attributed to an increase of the time-average pressure in the gap

due to squeeze-film effects. In the pressurized mode of operation the

measured gap widths at the foil sector B1 3 , in both the horizontal and

vertical attitudes, were the order of 0.002 inch. At 300 RPS, in the

self-acting mode, the clearances were the order 250 to 750 Ainches,

increasing to approximately 900 pinches at 750 RPS. It appears that

gravity loading in the horizontal attitude is compensated largely by

unloading of the upper foil sectors.

Comparison of gap widths at other foil sectors indicated

variations of approximately 20%, but it must be emphasized that gap

measurements were considered to be accurate to within 10% only. The

reader is also alerted to the fact that the gap width decreases with

tension and that relatively small extensions 6£, comparable in magnitude

with the gap width h*, result in very appreciable increments of tension

6T. 1 These differences and asymmetries are almost unavoidable in any

realistic application. The encouraging fact is that the operational charac-

teristics of the foil-bearing supported rotor seemed to be quite insensitive

to these inherent nonuniformities, as evidenced by the successful operation

of the simulator in both the vertical and horizontal attitudes.

t Note that, approximately h* T 2 /
3 and 6T/6£ = Et/E - 104
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Two coastdown curves from a speed of 750 RPS are plotted in

Fig. 12. Although these plots correspond to operation in the vertical and

in the horizontal attitudes, it can be seen that the curves are nearly

congruent, indicating that frictional losses were nearly identical. The

total frictional power loss at rated speed of 36,000 RPM, inclusive of

windage, foil bearing and thrust bearing losses, was approximately

0.78 kw. An estimate, based on the assumption of simple Couette

flow and an average gap width of 800 Ainches, with air as a lubricant,

shows the foil-bearing loss to be the order of 0.22 kw.

Response to Unidirectional Excitation by a Vibrator (Shake-Table)

The experiments pertinent to the response of the system to

rotating imbalance furnished no information with respect to resonances

in the self-acting mode. These resonances, since they occur in a

frequency interval adjacent to the resonant bandwidth in the pressurized

mode and below the transition speed to the self-acting mode, could

not be consequently observed in the course of previous experiments.

The purpose of the shake-table experiments was to determine

various performance sharacteristics of the rotor when subjected to

periodic unidirectional excitation. A view of the foil-bearing supporting

rotor, mounted on an oil-floated plate attached to the exciter head, is

shown in Fig. 13. The excitation was imparted along a line perpen-

dicular to both the rotor axis and the direction of gravity, that is perpen-

dicular to the bisector of the unloaded foil segment.* The tests were

conducted at the rated speed N = 36,000 RPM and the rotor was supported

on 1 mil molybdenum foils, preloaded to approximately 2.0 lb/in.

Scans of response with increasing and decreasing frequency of

excitation, in the range 25 < fe <1000 CPS, are illustrated in the oscillo-

grams of Fig. 14. Shown also are outputs of three accelerometers, the

*In a set of similar experiments described in references [5 ] and [6],
the direction of gravity coincided with the axis of rotation and excitation
was along a bisector passing through the foil lock.
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locations of which are indicated in the accompanying schematic diagram

of the shake-table and the foil rotor system.* The scans are similar

and show that resonances occurred in the narrow bandwidth centered

approximately at f e 185 CPS. The maximum in-line excursions
e

corresponding to an excitation level Gx 0.8 (peak amplitude) were

were (xA ) max 2100 Din and (x ) ma x 1250 gin. The orbitsA~') max B max
corresponding to these maximum excursions are shown in Fig. 15 and

the frequencies of excitation at which these maxima occurred were

170 CPS and 200 CPS respectively. The motion in the resonant region

was quasi-cylindrical, so that the traces of the in-line probe outputs

in the second oscillogram of Fig. 15 are nearly in-phase and do not differ

greatly in amplitude.

The motion of the rotor in the monitoring plane A, at various

frequencies of excitation, is illustrated in Fig. 16. The reader will

note that the displacement was nearly cdlinear with the excitation,

changing into a narrow quasi-elliptical orbit at resonance. The time-

base oscillogram in Fig. 16 shows the phase shift between in-line

acceleration and in-line displacement in passing through resonance.

The overall cclinearity of excitation and displacement can also be

noted in the first oscillogram of Fig. 17. The latter shows that at

N = 600 RPS and f = 300 CPS, the amplitude of motion increases
e

nearly linearly at a rate of approximatley 175 Ain/g in the range of

excitation 1 g • G s 5 g. The second oscillogram shows the sinusoidal

waveforms of the G accelerometer output. We note in passing that,

unlike in other types of fluid-film bearings, excitation at f = N/2
e

causes no loss of load capacity and an associated growth of amplitude

of motion.

*G was the controlling accelerometer, with the output of G' and G
usXed to assess yawing and pitching of the vibrating support-plate. Y
The plate was floated on a thin film of oil, on a granite table, and
was bolted to the exciter head. No other constraints were furnished.
The plate translated parallel to itself up to approximately 400 CPS.
Thereafter, various structural resonances occurred and the motion was
more complex.
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CONCLUSIONS

The experimental results presented in the preceding sections

pertain to a 21-pound rotor, supported by foil bearings and operated

stably in both the vertical and horizontal attitudes at speeds up to

50,000 RPM. The mass, the polar and transverse moments of inertia,

the bearing span and the bearing stiffness of the simulator matched

closely those of a Brayton Cycle Turbo-Alternator undergoing develop-

ment under the sponsorship of NASA [7].

Of the advantages of foil bearings listed below, all have been

substantiated by extensive tests in the course of the present and pre-

ceding studies:

a) Freedom from self-excited vibrations, commonly referred

to in literature as "half-frequency" or "fractional-frequency"

whirl. This consideration is particularly important in the

state of weightlessness, in which instability of gas-bearing

supported rotors is most likely to occur [8, 9, 101.

b) Excitation at frequency equal to half the speed of rotation

causes no loss of load capacity. The half-speed danger

point characterizes most rigid, fluid-film bearings, but is

absent in foil bearings [11].

c) Motion of the journal is not constrained by the narrow

confines of the clearance circle. Both foil and journal

can displace while maintaining the lubricating film. Rotor

excursions several times the order of clearance of a conven-

tional gas bearing can thus be accommodated.

d) The foil bearing is extremely forgiving of foreign particles.

It accommodates geometrical imperfections and misalignments.

Manufacture is simple and no stringent requirements exist

with regard to dimensional accuracy and roundness. The

performance of foil bearings appears to be quite insensitive



to large variations of various bearing parameters and

operation can be maintained under conditions which could

not be tolerated with other types of bearings.

At the present state of this relatively new bearing art, possible

disadvantages of foil bearings, in comparison with other types of bearings,

may be the following:

a) Relatively low stiffness (typically 15,000 lb/in for a

2.5-inch diameter, 1.5-inch long bearing).

b) Relatively greater journal-length requirement.

c) More elaborate pressurization system for starting.

The foil bearing is not intended to compete in stiffness with

other types of bearings, although an appreciable increase of stiffness

can be achieved. The practicality of gas-lubricated foil bearings has

been demonstrated as a method of support for high-speed turbomachinery.

While incorporation of the present foil-bearing configuration in the overall

design of turbomachines is in itself a practical proposition, further

development is in progress. In order to capitalize fully on the potential

of foil bearings, future development will be concentrated on problems

related to improved and novel methods of foil mounting, reduction of

journal length requirements, and simplification of starting methods.

Concepts and devices to further the foregoing objectives are already

under active consideration.
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1. View of Foil-Bearing Supported Rotor in the Horizontal Attitude 



2. View of Foil-Bearing Support Assembly 
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3. Schematic Diagram of Experimental Apparatusl
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13 . View of Experimental Apparatus and Vibrator 
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